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rate. The faster propagation rates predicted by the model in 
Section 2.2 show good agreement with data in water. In 
nitrogen, the data are higher even though they exhibit sig- 
nificant scatter. For both liquids and gases, however, equa- 
tion (8) provides a better estimate of the one-dimensional 
transport termination times than any other previous criteria. 
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INTRODUCTION 

BUOYANCY driven flow past bodies immersed in a saturated 
porous medium has been the subject of the studies by Cheng 
[l-3]. The effect of uniform mass flux on the free convection 
boundary layer on a vertical wall in a saturated porous 
medium was studied by Merkin [4]. Cheng [S] presented a 
similarity solution for the case of wall temperature and 
suction velocity varying as powers of X, the longitudinal 
distance. In all these problems numerical solutions have been 
given for selected values of a parameter. In this note, an 
analytical series solution based on Von Mises transformation 
is given for the problem studied by Cheng [5]. It is found 
that even a few terms of the series are sufficient to yield the 
numerical results reported in ref. [S]. The treatment is similar 
to that of Merkin 161. However, the equation and the boun- 
dary conditions are different. 

THE EQUATION AND SERIES SOLUTION 

The boundary layer equations of momentum and energy 
for the boundary layer flow past a vertical plate embedded 
in a saturated porous medium can be reduced to the form 
[51 

S”-@=:O (1) 

where the plate temperature and suction or injection velocity 
are respectively given by 

T,- T, = Ax” (3) 

(4) 

and 

where 

v, = a.y” 

II = (A-- 1)/Z. 

The boundary conditions are 

p=o: B=l, f=fw 

~+m:o=o, f'=O (5) 

where fw is the non-dimensional form of suction (fw > 0) or 
injection (fw < 0) velocity. Eliminating 8 gives 

.1."'+qAjy-~.(f~)2 =o, (6) 

Following Merkin [6], we transform equation (6), expressing 
p = p(4) where 

P =f’(qX (P = c-f(v)* c =ffa). 
The modified equation is 

(7a-c) 

(8) 

The boundary conditions on p are 

4=0: p=o 

C#t=c-fw: p= 1. 

We expand p in the series form 

p = 1 a& 

(9) 

(10) 
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NOMENCLATURE 

A constant defined in equation (3) 
a constant defined in equation (4) 
a, coefficients in series (10) 
c constant defined in equation (7~) 
f dimensionless stream function 
JW lateral mass flux parameter 
n constant defined in equation (4) 
P function defined in equation (7a) 
T temperature 
0 suction velocity 
X longitudinal distance. 

Greek symbols 
vl dimensionless lateral coordinate 
0 dimensionless temperature 
1 constant defined in equation (3) 
4 independent variable defined in equation (7b). 

Subscripts 
co condition at infinity 
W condition at the plate. 

Substituting this series in equation (8) and equating various 
coefficients of powers of 4 to zero we get the recurrence 
formula for the coefficients 

(s-t l)‘c(L+ l)a,+, = -2(s+ 1) 

and 

a,=;(l+a), **+. 

The coefficients up to n7 are explicitly given in the appendix. 
These coefficients decrease rapidly suggesting fast con- 
vergence of series (10). To find the value of c we use the 
boundary condition p(c--f,) = 1. Thus 

In most of the cases there is only one positive root, irre- 
spective of the number of terms taken in equation (13). How- 
ever, in a few cases there are at most two positive roots 
depending on the number of terms, with one root near the 
origin. In such cases, forfw > 0 the root satisfying c > ,fW > 0 
and forf, < 0 the common root valid for all the terms of the 
series, is considered. 

Integration of equation (6) together with the relation 

2 a,(c-fW)T = 1. (13) 
r= 1 

For finite s, this is a simple algebraic equation for c. Given 
fW, this can be solved by the interval halving method. c should 
be positive; this follows from the asymptotic form of the 
differential equation vahd for g -+ x) 

gives FC s 
f”(0) = - ; (1 +,%)&+(I +31) 2 *--- [ 1 . (17) 

r=i 

The value off”(O) and c are given in Table 1. Cheng [5] 
showed that the range of A for which the problem is physically 

,f”‘+ !+- = 0, 

Then 1 3 0 and f”(co) = 0 implies c r 0. Again using the 
equation 

(15) 

and assuming monotonic decay of temperature within the 
boundary layer, it fohows that for suction, c > f, > 0. 

Table 1. Values of -o’(O) = --f”(O) (N is the number of terms of the series used) 

fw 

-4 
-3 
-2 
-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 
1 
2 
3 
4 

0 113 
-. 

Series Numerical Series Numerical 
N C -f “OX C -f”(O) N C -f”(O) C -.f “(0) 

20 1.23750 0.00265 1.23935 0.00305 16 0.61758 0.05131 0.62906 0.12499 
20 1.24490 0.01822 1.24491 0.01823 16 0.69234 0.16639 0.69234 0.16640 

8 1.27174 0.07211 1.27176 0.07213 7 0.79118 0.24381 0.79114 0.24372 
8 1.36640 0.20404 1.36635 0.20404 5 0.96768 0.39702 0.96760 0.39700 
7 1.40067 0.24289 1.40066 0.24291 5 1.01889 0.44154 1.01886 0.44153 
7 1.44204 0.2863 1 1.44204 0.28633 5 1.07720 0.49164 1.07719 0.49164 
6 1.49127 0.33429 1.49128 0.33431 5 I. 14337 0.54759 1.14336 0.54759 
5 1.54910 0.38680 1.54912 0.38682 5 1.21802 0.60598 I.21802 0.60958 
5 1.61611 0.44374 1.61612 0.44375 5 1.30163 0.67765 1.30163 0.67765 
4 1.69272 0.50494 1.69265 0.50490 3 1.39445 0.75 169 1.39448 0.75172 
4 1.77888 0.57006 1.77884 0.57004 3 1.49659 0.83160 1.49660 0.83161 
4 1.87465 0.63889 1.87463 0.63888 3 1.60779 0.91700 1.60780 0.91701 
4 1.97974 0.71111 1.97972 0.71110 3 1.72769 1.00752 1.72769 1.00753 
4 2.09367 0.78641 2.09366 0.78640 3 1.85573 1.10274 1.85574 1.10274 
3 2.77412 1.19825 2.77409 I.19824 3 2.59480 1.63357 2.59480 1.63357 
3 3.58179 1.64747 3.58179 1.64747 3 3.44274 2.22256 3.44274 2.22255 
2 4.46028 2.11608 4.46021 2.11606 2 4.34844 2.84146 4.34842 2.84145 
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realistic is 0 < I. < 1. Special cases are : Acknowledgement-The authors wish to thank Dr S. Sathikh 

/, = 0 : uniform wall temperature with u, N x- “* 
for providing all facilities to undertake this work. 

1 = f : uniform heat flux with v, N x- l/3 

I = 1 : uniform wallvelocity with T, - X. 

For the purpose of comparison, the problem was again l. 
solved numerically to five decimal places for selected values 
of /z and SW, using the shooting method and the Runge- 
Kutta-Gill algorithm. These values are also shown in the 2. 
table. For A = 1, the coefficients ai = 0 for i 3 2 and the series 
gives the exact solution, which was not noticed by Cheng 

f(q) = c- fe-<q (18) 3. 

where 
4. 

c(c -fw) = 1. (19) 

Keeping the first two terms of series (10) the approximate 
solution is found to be 

5, 

f(v) = c- 
a,(c-fw)eCl'l 

a, +a2(c-fw)(l -ee41q) (20) 6. 

where 

c*(51+3)-2cf,(31+1)+[f;(~-I)-81 = 0. (21) 

We find from the table that the series solution gives very 
good results with 5-8 terms. For positive and large values of 
& even 2 or 3 terms of the series are sufficient. However, for 
large negative values of fw, considerably more terms are 
required. Moreover, in this case,f”(O) is found to be sensitive 
to the values of c and the series solution is of limited use. 

CONCLUSION 

An approximate series solution is found for the free con- 
vection boundary layer flow past a vertical plate in a porous 
medium for 0 < 1 < 1 and for a wide range of the values of 
the wall suction and injection velocity fw. For the case of 
suction relatively fewer terms are sufficient to give values 
which are in good agreement with the numerically computed 
results. The series solution also gives the exact solution for 
#I= 1. 
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APPENDIX 

-(I-1)(31+1) 
a3 = 

144c(I.+ 1) 

(n-1)(92*-1) 

a4 = 1152c2(1,+ I)2 

-(603~4-82213+11222+118~-11) 
as = 

172800c3(l+ 1)’ 

(3501~s-611714+218613+734~2-2951-9) 
a6 = 

2073 600c4(1+ 1)4 

a7 = -(521937L6-1 11936615+639891~4 

+46556/2’-973531=+6762L 

+ 1573)/(609 638 400cs(1 + 1)5). 


